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1 INTRODUCTION
We implemented a burst (multiple similar shots) photograph

HDR pipeline for the final project based on Google’s HDR+ paper
[3]. The HDR+ paper proposed an image processing pipeline that
combines multiple underexposure (to avoid over-saturation) raw
images and generates enhanced HDR photos. Our project applies
a similar HDR+ pipeline to the original dataset of HDR+ paper,
with some modifications on the alignment and finishing part while
maintaining the overall performance.

Smartphones have limited camera hardware and a small image
sensor and lens, making computational photography essential to
produce clear images. Taking photos on smartphones can result in
parts of the image being over-or under-exposed given the limited
range. Additionally, smartphone cameras traditionally cannot take
photos in low lighting conditions and may generate noisy images.
Since smartphone cameras are not able to capture the same SNR as
traditional cameras, HDR+ allows for combining multiple images
to generate a visually complete photo. The HDR+ algorithm allows
us to create an image that has a higher amount of visual detail in
more lighting conditions and remove noise at the same time. HDR
images are images with a high dynamic range where the image
captures a large range of luminosity from a scene.

This paper is divided into 5 Sections. In Section 1, we give a brief
introduction of what is HDR+ and why we decided to choose it as
our final project. In Section 2, we give an overview of the HDR+
algorithm, how we implement the HDR+ pipeline, and some of
our novel implementation choice. In Section 3, we talk about the
problems we encountered when working on this project and how
we handle those problems. In Section 4, we show our results on
multiple datasets and compare our results with the original google
HDR+ paper. In Section 5, we summarize our work and provide
potential future work. Our project website can be found here:
https://ucberkeley-spring2022-cs284a-project.github.io/HDRplus/

2 TECHNICLE DETAILS AND
IMPLEMENTATIONS

2.1 Pipeline Overview and Dependency
The HDR+ pipeline can be roughly divided into three parts:

Alignment, Merging, and Finishing (including adjusting white bal-
ance, tone-mapping, etc). A full pipeline, implemented by [3], is
shown in Figure 1.

Figure 1: HDR+ pipeline. Align and Merge is represented as
one stage. Finishing is represented as multiple stages. Source:
[3]

The alignment part aligns each image tile between the reference
image and other alternative images inside the burst. The merging
part merges multiple image tiles onto the reference image, this
helps to improve the SNR. The finishing part is mainly in charge of
raw Bayer image processing including correction, demosaicing, etc.
A more detailed description of each part and how we implemented
will be mentioned below.

We build our project with C++ from scratch, with the help of
libraries like OpenCV [1] for image processing function, LibRaw
and Exiv2 for raw Bayer image processing. Our project is open-
sourced and is available publicly at https://github.com/UCBerkeley-
Spring2022-CS284A-Project/HDRplus

2.2 Alignment
2.2.1 Algorithm. The input of the alignment part is a burst of raw
Bayer image. The output of the alignment part is a list of list of
alignment pairs. Where the first list corresponds to each image in
the burst. The second list corresponds to each tile in the reference
image. The alignment pair contains displacement in pixel value of
how tile (i,j) in the alternative image is matched with tile (i,j) in the
reference image.

In the alignment part, an image pyramid of 4 levels is first cre-
ated based on the input data. The image pyramid is created with
a gaussian blur and box filter downsample. Tile size is chosen for
each pyramid level (8x8 pixels for the coarsest level, 16x16 pixels
for all other levels). The sharpest image is chosen as a reference
image and all other images try to align their tiles to the reference
image. In our implementation, we do not choose the sharpest image
ourselves, instead, we use the sharpest image choice of the original
google dataset. The alignment of tiles first starts from the coarsest
level using L1/L2 loss. For each following level (of larger size), the
previous level (coarser level) alignment is upsampled and used as
the initial guess for alignment. Following the original paper, for
each upsampled alignment at tile (i,j) , we also consider the nearest
neighbor tiles in x and y dimensions (e.g. tile (i-1, j) and tile (i, j-1) )
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as candidate tiles and choose the upsampled alignment at tile (i,j)
from the three candidate alignment based on smallest L1 distance.
Image tile is choose to overlap each other tile by 50%, this ensures
the merged image do not have blocking effect. Figure 2 shows the
alignment at each image pyramid level where the color of each tile
represents the alignment direction and magnitude.

Figure 2: Alignment at each image pyramid level Source: [3]

2.2.2 Implementation. The alignment part is computation and
memory intense and requires lots of optimization. Here, we briefly
talk about the optimization we have done in the alignment section.

OpenMP [2] is used to parallel alignment search for each tile. We
choose to use OpenMP over pthread because (1) OpenMP internally
maintains a thread pool and has a lighter overhead of creating
thread and (2) OpenMP’s # pragma omp parallel for is easier
to use compared with explicitly creating pthread.

When searching alignment for each reference image tile (i,j),
explicit data caching is applied to the reference image tile and the
alternative image’s search area. Specifically, we create a cv::Mat
that contains a copy of the reference image tile (i,j) and use this
copied tile (i,j) during searching. Since the copied tile (i,j) is contin-
ues in underlying memory (whereas the tile on the original refer-
ence image does not continue for each tile row) and is placed on the
cache (since we just finish the memory copy), we can reduce access
to main memory by a factor of search radius * search radius.
The same copy is also applied to the corresponding search area in
the alternative image to reduce main memory access. The explicit
memory caching reduce the bandwidth pressure.

Customized kernel function is used instead of the general OpenCV
function for many kernel functions like nearest neighbor down-
sample, box filter, etc. This helps speed up the kernel size since we
can tune the kernel for specific image types ( i.e. uint16_t ) and
kernel size.

Template with tile size as the template parameter, -O3 optimiza-
tion flag, and #pragma GCC unroll tile_size is used to enable
better compiler SIMD support. Having tile size (of size 8, 16) as a tem-
plate parameter (i.e. template<int tile_size>) instead of a func-
tion argumentwould enable the compiler to generate SIMD function
kernel since the compiler would have the tile size information when
the template is instanized. Using #pragma GCC unroll tile_size
help avoid the branching overhead inside the for loop. This kind
of template trick is applied to many customize kernels including l1
distance, l2 distance, nearest neighbor downsample, box filter, etc.

2.3 Merging
2.3.1 Algorithm. The merging part of the HDR+ pipeline takes in
the burst sequence and the alignment generated in the previous
step to create a merged image with proper denoising. This is mainly
accomplished in four steps:

1) Noise Level Estimation. We evaluate the noise level in the
reference image so that we will be able to distinguish differences
between different frames from base noise of the image. We follow
the Google HDR+ paper [3] and assume that the noise can be
evaluatedwith a single value for each tile; specifically, the rootmean
square (RMS) of the tile. Once the RMS is obtained, we evaluate
the noise variance using noise parameters evaluated from the ISO,
white level, and black level of the image. Mathematically, the noise
variance 𝜎2 of tile 𝑇0 is calculated by 𝜎2 = 𝜆𝑠𝜌 (𝑇0) + 𝜆𝑟 , where
𝜌 (𝑇0) is the RMS of 𝑇0, and 𝜆𝑠 and 𝜆𝑟 are constants representing
the shot noise and read noise, respectively.

2) Fourier Pairwise Temporal Denoising. With the alignment
calculated, we use Fourier transformation to perform temporal
denoising across the burst sequence. For a reference tile, we acquire
the aligned tiles on the alternate images and find their Fourier
transforms in the frequency domain. We then linearly interpolate
them with a shrinkage operator that is similar to a Wiener filter.
Mathematically, we have 𝑇𝑛 (𝜔) = DFT(𝑇𝑛) for 𝑛 = 0 to 𝑁 . Then,
the merged tile in the frequency domain is

𝑇0 (𝜔) =
1
𝑁

𝑁−1∑︁
𝑛=0

(1 −𝐴𝑛 (𝜔))𝑇𝑛 (𝜔) +𝐴𝑛 (𝜔)𝑇0 (𝜔),

where, for a scaling factor 𝑘 = 2𝑛2

42 [3] and a tuning temporal factor
𝜏 ,

𝐴𝑛 =
|𝑇𝑛 (𝜔) −𝑇0 (𝜔) |2

|𝑇𝑛 (𝜔) −𝑇0 (𝜔) |2 + 𝑘𝜏𝜎2
.

3) Spatial Denoising. Since we are in the frequency domain,
it is convenient to perform post-processing and filter out higher
frequency noise as well. We assume that in the previous step, all
images in the burst sequence are aligned; as a result, we divide the
noise variance 𝜎2 by 𝑁 . We then apply a similar Wiener filter:

𝑇0 =
|𝑇0 (𝜔) |2

|𝑇0 (𝜔) |2 + |𝜔 | ∗ 𝑘𝑠
2𝑁 𝜎2

,

where 𝑠 is another tuning spacial factor. We are now finished with
the frequency domain and revert the image by finding the inverse
DFT of the merged tile.

4) Merge Overlapping Tiles. As mentioned in Section 2.2.1,
tiles are overlapped to avoid visible blocking. Hence, a raised co-
sine window is applied in both dimensions to make sure tiles are
superimposed with correct values; higher values on the center and
lower values on the side. Mathematically, for each pixel value 𝑝 at
position 𝑥,𝑦 of a tile with length 𝑛, the new value 𝑝 ′ is

𝑝 ′ = ( 1
2
− 1
2
cos

2𝜋
𝑛

(𝑥 + 1
2
)) ( 1

2
− 1
2
cos

2𝜋
𝑛

(𝑦 + 1
2
)).

Finally, values of overlapping tiles are added together to create the
processed merge image, which has a higher SNR.
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2.3.2 Implementation. We largely follow the above algorithm for
implementation, using OpenCV’s cv::Mat class. Since we are tak-
ing bayer images as input, four values on the bayer images represent
one pixel. Hence, we manually split the image into four channels
(R, G1, G2, B) and use single channels as the input for the above
algorithm, merging them channel-wise. When possible, we use
batch operations on the whole array (cv::Mat) to avoid iterations.
We then put channel values back to a cv::Mat representing a new
bayer image.

In Google’s original implementation, Hasinoff et al. have direct
control over the noise parameters 𝜆𝑠 and 𝜆𝑟 through the camera’s
API [3]. However, the information is not retained in the dataset,
making it difficult to evaluate the noise level. We follow Monod et
al.’s approach [4] and evaluate these parameters by comparing the
ISO of input image with baseline parameters at ISO 100. Mathemat-
ically, we denote the actual input as ISO

100𝑥 , a value scaled with the
ISO ratio. Given baseline parameters at ISO 100 𝜆𝑠,100 and 𝜆𝑟,100,
we have:

𝜎2 ( ISO
100

𝑥) = ( ISO
100

)2𝜎2 (𝑥)

= ( ISO
100

)2 (𝜆𝑠,100𝑥 + 𝜆𝑟,100)

=
ISO
100

𝜆𝑠,100 (
ISO
100

𝑥) + ( ISO
100

)2𝜆𝑟,100

= 𝜆𝑠,ISO (
ISO
100

𝑥) + 𝜆𝑟,ISO .

This approach allows us to acquire the noise parameters without di-
rect access to the camera capturing the images; however, an estimate
of 𝜆𝑠,100 and 𝜆𝑟,100 is still needed. After running experiments, we
decide to follow Monod et al. [4] and use 3.24× 10−4 and 4.3× 10−6
respectively; the resulting images are visually satisfactory, with
balanced blurriness, denoising, and exposure. We experiment on
other tuning parameters like the temporal factor 𝜏 and the spatial
factor 𝑠 as well; we end up using 𝜏 = 75 and 𝑠 = 0.1 for better
subjective image quality.

2.4 Finishing
2.4.1 Algorithm. The finishing part aims to mimic an ISP that
performs correction, demosaicking and tone mapping operations
on the merged image. But a key difference is, in order to reduce the
contrast between highlights and shadows while preserving local
contrast, we adapt exposure fusion in local tone mapping step using
synthetic exposure which applies gain and gamma correction to
the extracted grayscale image. Fig3 is the pipeline of the finishing
part.

2.4.2 Implementation. Aswe can see from the pipeline, after receiv-
ing the merged bayer image from the merging part, the finishing
part performs the following operations in order to get the final
output image.

1) Basic Post Processing.We perform black level subtraction,
white balance, demosaicking and color correction on the merged
bayer image in this step. Note that we perform this post processing
whenever we read in a raw bayer image.

2) HDR Local ToneMapping.We first transform the processed
merged image into a grayscale image by averaging on the RGB
channel. Then we perform synthetic exposure on the grayscale

Figure 3: The pipeline of the finishing part[3]

image to get a short exposure image and a long exposure image
and fuse them into a fused exposure image. Eventually, we use the
fused exposure to modulate the processed merged image. Here we
only use the two images for exposure fusion in order to reduce
computation and memory consumption. The hyperparameter for
calculating the gain in each exposure can be modified according
to the hardware and environment to get a better result. We also
optimized some functions like getting the grayscale image out of
the RGB channels using OpenMP to yield a higher speed.

3) Global Tone Mapping. In this step, we generally enhance
the contrast of the merged image by applying an S-shaped curve
function to each channel. Here we use the following sin function
for contrast enhancement:

𝑦 = min(1,max(0, 𝑥 − 𝛼 sin(2𝜋𝑥)))

where 𝛼 is a hyperparameter that we need to choose carefully
according to the real situation.

4) Gamma compression. This step plays an important role
in turning a dark image into a more visually appealing image by
shifting pixel values from linear to nonlinear sRGB space. We use
the sRGB transform function defined by IEC 61966-2-1.

5) Sharpening. We first apply Gaussian blur on the image
3 times with different Gaussian kernels to get 3 blurred images
{𝐼𝐺𝜎𝑛 |𝑛 = 1, 2, 3}, where 𝜎𝑛 is the standard deviation of Gaussian
kernel 𝑛. Then we subtract the original image with 3 blurred image
to get 3 low-contrast images {𝐼𝐿𝜎𝑛 |𝑛 = 1, 2, 3}:

𝐼𝐿𝜎𝑛 (𝑥,𝑦) = |𝐼𝐺𝜎𝑛 (𝑥,𝑦) − 𝐼 (𝑥,𝑦) |

Then we use the low-contrast image as mask and merge with the
original image to get the final output according to the following
rule:

𝐼𝑠ℎ𝑎𝑟𝑝𝑒𝑛 =
1
3

3∑︁
𝑛=1

(𝐼𝑛
𝑠ℎ𝑎𝑟𝑝𝑒𝑛

)

Where

𝐼𝑛
𝑠ℎ𝑎𝑟𝑝𝑒𝑛

(𝑥,𝑦) =
{
𝐼 (𝑥,𝑦) + 𝛼𝑛𝐼

𝐿
𝜎𝑛

(𝑥,𝑦), 𝐼𝜎𝑛 > 𝑡𝑛

𝐼 (𝑥,𝑦), otherwise

Where 𝑡𝑛 and 𝛼𝑛 are hyper parameters we set to control the
sharpness. During our experiments, we found that 𝜎𝑛 ∈ {1, 2, 4},
𝛼 ∈ {1, 0.5, 0.5} and 𝑡𝑛 ∈ {0.02, 0.04, 0.06} can give us a good result.
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But it might depend on the hardware or environment we use and
users might need to adjust these parameters in order to get similar
results.

3 PROBLEM ENCOUNTERED
3.1 Debugging numerical bug

One major problem we encountered is how to debug numerical
bugs. Unlike logical bugs that may cause the segmentation fault
and can be easily debugged by gdb. Numerical bugs, specifically
how the tiles are aligned, can be hard to catch. We can only tell
from the final result that something is wrong with the alignment,
but we can’t really tell using gdb which steps inside the alignment
is wrong. We found that print out the intermediate output of each
step and comparing the intermediate output with hand computed
results is more helpful than gdb.

3.2 OpenCV 3.2 Memory Leak
One segmentation fault we have encountered is amemory leak re-

lated to OpenCV 3.2. Initially, we’re using ubuntu 18.x, and OpenCV
3.2 is installed by default through apt install libopencv-dev.
We found that only the top part of the final image is shown correctly,
while all the other image parts are random noise. We try to debug
this issue by printing out the intermediate image value and finally
realized this might be related to how OpenCV uses reference count
and maintain a memory pool for cv::Mat. We solve this problem
by manually install OpenCV 4.x with CMake.

3.3 Varying Output On Different Environments
During testing, we observe that the final output varies when

generated on different environments. We have tested two envi-
ronments, both on Ubuntu 20.04; all dependencies have matching
versions, and all parameters are set to be identical. Nonetheless, dif-
ference is visually noticeable, as illustrated in Figure 4. While we are
unable to determine the root cause, our speculation is that system
architecture plays an important role here, as Environment 1 is on a
native Linux machine and Environment 2 is run inside Windows
Subsystem for Linux (WSL). Kernel adaptions for Windows may
lead to altered numerical results, thus leading to slightly different
visuals. We use final images from Environment 1 to present our
work in this report.

(a) Final Output on Environ-
ment 1

(b) Final Output on Environ-
ment 2

Figure 4: Varying outputs on different environments.

4 RESULTS AND ANALYSIS
4.1 Compare single image with merged image

We perform an ablation study to help us better visualize the
effect of denoising. In one experiment, we just use a single image
and directly go through the finishing part. In the other experiment,
we input a group of burst images and go through the whole pipeline,
including alignment, merging and finishing. Fig 5 shows the results
for this comparison.

As is shown in the visual results, the finishing part can generally
give a better exposure on the original image and enhance the con-
trast to a more visually appealing level but can’t deal with noise.
Comparing column (b) and (c), we can clearly tell that alignment
and merging play an important role in noise reduction.

4.2 Compare with results from reference papers
We also compared our results with google and gopro’s results.

Fig 6 shows the results from Google HDR+, GoPro’s python HDR+
and our HDR+ respectively. We can see that Google’s results are
generally darker than GoPro’s and our results. Their processed
images usually have a classical style, which kind of gives people
a feeling of solemnity. GoPro’s results are generally brighter and
have a more energetic feeling. Unlike their styles, our HDR+ seems
to pay more attention to details. For example, the textures in the
fire, color variance in green grass and the ice cubes in the glasses.

We believe that these differences can mainly be due to the choice
of hyperparameters like standard deviation of Gaussian kernels,
gains for long/short exposures, the reference images and so on.
It doesn’t necessarily mean that our HDR+ is somewhat better
than Google’s and GoPro’s. As an old saying goes, there are a
thousand Hamlets in a thousand people’s eyes. Thus, different
people might prefer different results generated by these three HDR
implementations.

4.3 Manually adding noise
To test the robustness of our HDR pipeline, we add salt-pepper

noise onto the original burst images. Fig 7 (a) and (b) are the original
view and zoom-in view of the results we get respectively. The first
row shows the output of the finishing part using a single image
with noise as input. The second row shows the output of our whole
pipeline using a group of burst images as input. We can clearly see
that our HDR pipeline can still generate a denoised output given a
high noise level. For example, the grass in the bottom right corner
of the third image is hard to tell when only using a single image
but it’s still quite visible when using our merged denoised image.
Thus, we believe our HDR+ pipeline is robust towards noise.

5 CONCLUSION
This HDR pipeline overcomes limitations in smartphone cam-

era hardware by combining multiple underexposed raw images to
generate enhanced HDR photos with increased SNR. Our pipeline
modifies the alignment and finishing part while optimizing perfor-
mance. During this project we learned about the intricacies of lower
level image processing and computational photography. While im-
plementing, we encountered lots of numerical related bugs, and we
found the easiest way to debug them is to print them out, since gdb
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(a) single image (minimum processed) (b) single image + finishing (c) merged image + finishing

Figure 5: Comparison between minimum processed single reference image, single reference image after finishing part and a
group of burst images go through our whole HDR+ pipeline

does not really help a lot here. There are a lot of detailed imple-
mentation decisions not mentioned in the original Google paper,
and we needed to figure out by ourselves which is a more rational
decision. Our results are visually comparable with the results from
Google and GoPro and achieve the denoising. Future improvements
could include implementing bracketing, as followed up by Google,
which would alter the merging step by combining additional images
with different exposures. We could also improve our pipeline to
run more effectively on mobile hardware.
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(a) Google’s HDR+ results (b) GoPro’s HDR+ results (c) Our HDR+ results

Figure 6: Comparison between the results of Google’s HDR+, GoPro’s python HDR+ and our HDR+ implementation
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(a) Original view of the results in adding noise experiments

(b) Zoom-in view of the results in (a)

Figure 7: Results after adding salt-pepper noise to input images. In each subfigure: Row a) single image + noise + finishing; Row
b) burst images + noise + alignment + merging + finishing
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